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9 Multiple Random Variables

One is often interested not only in individual random variables, but
also in relationships between two or more random variables. Fur-
thermore, one often wishes to make inferences about one random
variable on the basis of observations of other random variables.

Example 9.1. If the experiment is the testing of a new medicine,
the researcher might be interested in cholesterol level, blood pres-
sure, and the glucose level of a test person.

9.1 A Pair of Random Variables

Definition 9.2. If X and Y are random variables, we use the
shorthand

[X ∈ B, Y ∈ C] = [X ∈ B and Y ∈ C]

= {ω ∈ Ω : X(ω) ∈ B and Y (ω) ∈ C}
= {ω ∈ Ω : X(ω) ∈ B } ∩ {ω ∈ Ω : Y (ω) ∈ C}
= [X ∈ B] ∩ [Y ∈ C] .

• Observe that the “,” in [X ∈ B, Y ∈ B] means “and”.

Consequently,

P [X ∈ B, Y ∈ C] = P [X ∈ B and Y ∈ C]

= P ([X ∈ B] ∩ [Y ∈ C]) .
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Similarly, the concept of conditional probability can be straight-
forwardly applied to random variables via

P [X ∈ B|Y ∈ C] = P ([X ∈ B] |[Y ∈ C]) =
P ([X ∈ B] ∩ [Y ∈ C])

P ([Y ∈ C])

=
P [X ∈ B, Y ∈ C]

P [Y ∈ C]
.

Example 9.3. We also have

P [X = x, Y = y] = P [X = x and Y = y] ,

P [X = x|Y = y] =
P [X = x and Y = y]

P [Y = y]
,

and

P [3 ≤ X < 4, Y < 1] = P [3 ≤ X < 4 and Y < 1]

= P [X ∈ [3, 4) and Y ∈ (−∞, 1)] .

P [3 ≤ X < 4|Y < 1] =
P [3 ≤ X < 4 and Y < 1]

P [Y < 1]

Definition 9.4. Joint pmf : If X and Y are two discrete random
variables (defined on a same sample space with probability measure
P ), the probability mass function pX,Y (x, y) defined by

pX,Y (x, y) = P [X = x, Y = y]

is called the joint probability mass function of X and Y . We
can then evaluate P [(X, Y ) ∈ R] by

∑
(x,y):(x,y)∈R pX,Y (x, y).

Definition 9.5. The joint cdf of X and Y is defined by

FX,Y (x, y) = P [X ≤ x, Y ≤ y] .

Definition 9.6. The conditional pmf of X given Y is defined
as

pX|Y (x|y) = P [X = x|Y = y]

which gives

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x).
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Example 9.7. Toss-and-Roll Game:

Step 1 Toss a fair coin. Define X by

X =

{
1, if result = H,
0, if result = T.

Step 2 You have two dice, Dice 1 and Dice 2. Dice 1 is fair. Dice 2 is
unfair with p(1) = p(2) = p(3) = 2

9 and p(4) = p(5) = p(6) =
1
9 .

(i) If X = 0, roll Dice 1.

(ii) If X = 1, roll Dice 2.

Record the result as Y .
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9.8. Suppose at x = a, we have pX(a) = 0. Then pX,Y (a, y) = 0
for any y.

Similarly, suppose at y = a, we have pY (a) = 0. Then pX,Y (x, a) =
0 for any x.

Definition 9.9. When X and Y take finitely many values (have
finite supports), say x1, . . . , xm and y1, . . . , yn, respectively, we can
arrange the probabilities pX,Y (xi, yj) in the m× n matrix

pX,Y (x1, y1) pX,Y (x1, y2) . . . pX,Y (x1, yn)
pX,Y (x2, y1) pX,Y (x2, y2) . . . pX,Y (x2, yn)

...
... . . . ...

pX,Y (xm, y1) pX,Y (xm, y2) . . . pX,Y (xm, yn)

 .
• We shall call this matrix the joint pmf matrix.

• The sum of all the entries in the matrix is one.

• The sum of the entries in the ith row is pX(xi), and
the sum of the entries in the jth column is pY (yj):

pX(xi) =
n∑
j=1

pX,Y (xi, yj) (17)

pY (yj) =
m∑
i=1

pX,Y (xi, yj) (18)

9.10. Summary : From the joint pmf, we can find pX(x) and pY (y)
by

pX(x) =
∑
y

pX,Y (x, y) (19)

pY (y) =
∑
x

pX,Y (x, y) (20)
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2.3 Multiple random variables 75

Example 2.13. In the preceding example, what is the probability that the first cache

miss occurs after the third memory access?

Solution. We need to find

P(T > 3) =
∞

∑
k=4

P(T = k).

However, since P(T = k) = 0 for k ≤ 0, a finite series is obtained by writing

P(T > 3) = 1−P(T ≤ 3)

= 1−
3

∑
k=1

P(T = k)

= 1− (1− p)[1+ p+ p2].

Joint probability mass functions

The joint probability mass function of X and Y is defined by

pXY (xi,y j) := P(X = xi,Y = y j). (2.7)

An example for integer-valued random variables is sketched in Figure 2.8.
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Figure 2.8. Sketch of bivariate probability mass function pXY (i, j).

It turns out that we can extract the marginal probability mass functions pX (xi) and

pY (y j) from the joint pmf pXY (xi,y j) using the formulas

pX (xi) = ∑
j

pXY (xi,y j) (2.8)

Figure 3: Example of the plot of a joint pmf. [7, Fig. 2.8]

In this setting, pX(x) and pY (y) are call the marginal pmfs (to
distinguish them from the joint one).

In MATLAB, if we define the joint pmf matrix as P XY, then the
marginal pmf (row) vectors p X and p Y can be found by

p_X = (sum(P_XY,2))’

p_Y = (sum(P_XY,1))

Example 9.11. Consider the following joint pmf matrix

Exercise 9.12 (F2011). Random variables X and Y have the
following joint pmf

pX,Y (x, y) =

{
c (x+ y) , x ∈ {1, 3} and y ∈ {2, 4} ,
0, otherwise.
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(a) Check that c = 1/20.

(b) Find P
[
X2 + Y 2 = 13

]
.

(c) Find pX(x).

(d) Find EX.

(e) Find pY |X(y|1). Note that your answer should be of the form

pY |X(y|1) =


?, y = 2,
?, y = 4,
0, otherwise.

(f) Find pY |X(y|3).

Definition 9.13. Two random variables X and Y are said to be
identically distributed if, for every B, P [X ∈ B] = P [Y ∈ B].

9.14. The following statements are equivalent:

(a) Random variables X and Y are identically distributed .

(b) For every B, P [X ∈ B] = P [Y ∈ B]

(c) pX(c) = pY (c) for all c

(d) FX(c) = FY (c) for all c

Definition 9.15. Two random variables X and Y are said to be
independent if the events [X ∈ B] and [Y ∈ C] are independent
for all sets B and C.

9.16. The following statements are equivalent:

(a) Random variables X and Y are independent .

(b) [X ∈ B] |= [Y ∈ C] for all B,C.

(c) P [X ∈ B, Y ∈ C] = P [X ∈ B]× P [Y ∈ C] for all B,C.

(d) pX,Y (x, y) = pX(x)× pY (y) for all x, y.

(e) FX,Y (x, y) = FX(x)× FY (y) for all x, y.

Definition 9.17. Two random variables X and Y are said to be
independent and identically distributed (i.i.d.) if X and
Y are both independent and identically distributed.
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Example 9.18. Suppose the pmf of a random variable X is given
by

pX (x) =


1/4, x = 3,
α, x = 4,
0, otherwise.

Let Y be another random variable. Assume that X and Y are
i.i.d.

Find

(a) α,

(b) the pmf of Y , and

(c) the joint pmf of X and Y .
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Example 9.19. Consider a pair of random variables X and Y
whose joint pmf is given by

pX,Y (x, y) =


1/15, x = 3, y = 1,
2/15, x = 4, y = 1,
4/15, x = 3, y = 3,
β, x = 4, y = 3,
0, otherwise.

(a) Are X and Y identically distributed?

(b) Are X and Y independent?
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9.2 Extending the Definitions to Multiple RVs

Definition 9.20. Joint pmf:

pX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 = x1, X2 = x2, . . . , Xn = xn] .

Joint cdf:

FX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] .

Definition 9.21. Identically distributed random variables: The
following statements are equivalent.

(a) Random variables X1, X2, . . . are identically distributed

(b) For every B, P [Xj ∈ B] does not depend on j.

(c) pXi
(x) = pXj

(x) for all x, i, j.

(d) FXi
(x) = FXj

(x) for all x, i, j.

Definition 9.22. Independence among finite number of random
variables: The following statements are equivalent.

(a) X1, X2, . . . , Xn are independent

(b) [X1 ∈ B1], [X2 ∈ B2], . . . , [Xn ∈ Bn] are independent, for all
B1, B2, . . . , Bn.

(c) P [Xi ∈ Bi,∀i] =
∏n

i=1 P [Xi ∈ Bi], for all B1, B2, . . . , Bn.

(d) pX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 pXi

(xi) for all x1, x2, . . . , xn.

(e) FX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 FXi

(xi) for all x1, x2, . . . , xn.

Example 9.23. Toss a coin n times. For the ith toss, let

Xi =

{
1, if H happens on the ith toss,
0, if T happens on the ith toss.

We then have a collection of i.i.d. random variablesX1, X2, X3, . . . , Xn.

Example 9.24. Roll a dice n times. Let Ni be the result of the
ith roll. We then have another collection of i.i.d. random variables
N1, N2, N3, . . . , Nn.
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Example 9.25. Let X1 be the result of tossing a coin. Set X2 =
X3 = · · · = Xn = X1.

9.26. If X1, X2, . . . , Xn are independent, then so is any subcollec-
tion of them.

9.27. For i.i.d. Xi ∼ Bernoulli(p), Y = X1 + X2 + · · · + Xn is
B(n, p).

Definition 9.28. A pairwise independent collection of random
variables is a collection of random variables any two of which are
independent.

(a) Any collection of (mutually) independent random variables is
pairwise independent

(b) Some pairwise independent collections are not independent.
See Example (9.29).

Example 9.29. Let suppose X, Y , and Z have the following
joint probability distribution: pX,Y,Z (x, y, z) = 1

4 for (x, y, z) ∈
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. This, for example, can be con-
structed by starting with independent X and Y that are Bernoulli-
1
2 . Then set Z = X ⊕ Y = X + Y mod 2.

(a) X, Y, Z are pairwise independent.

(b) X, Y, Z are not independent.
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9.3 Function of Discrete Random Variables

9.30. For discrete random variable X, the pmf of a derived ran-
dom variable Y = g(X) is given by

pY (y) =
∑

x:g(x)=y

pX(x).

Similarly, for discrete random variables X and Y , the pmf of a
derived random variable Z = g(X, Y ) is given by

pZ(z) =
∑

(x,y):g(x,y)=z

pX,Y (x, y).

Example 9.31. Suppose the joint pmf of X and Y is given by

pX,Y (x, y) =


1/15, x = 0, y = 0,
2/15, x = 1, y = 0,
4/15, x = 0, y = 1,
8/15, x = 1, y = 1,
0, otherwise.

Let Z = X + Y . Find the pmf of Z.
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9.4 Expectation of function of discrete random variables

9.32. Suppose X is a discrete random variable.

E [g(X)] =
∑
x

g(x)pX(x).

Similarly,

E [g(X, Y )] =
∑
x

∑
y

g(x, y)pX,Y (x, y).

These are called the law/rule of the lazy statistician (LOTUS)
[20, Thm 3.6 p 48],[7, p. 149] because it is so much easier to use
the above formula than to first find the pmf of g(X) or g(X, Y ).
It is also called substitution rule [19, p 271].

Discrete
P [X ∈ B]

∑
x∈B

pX(x)

P [(X, Y ) ∈ R]
∑

(x,y):(x,y)∈R
pX,Y (x, y)

Joint to Marginal: pX(x) =
∑
y

pX,Y (x, y)

(Law of Total Prob.) pY (y) =
∑
x

pX,Y (x, y)

P [X > Y ]
∑
x

∑
y: y<x

pX,Y (x, y)

=
∑
y

∑
x:x>y

pX,Y (x, y)

P [X = Y ]
∑
x

pX,Y (x, x)

X |= Y pX,Y (x, y) = pX(x)pY (y)

Conditional pX|Y (x|y) =
pX,Y (x,y)

pY (y)

E [g(X, Y )]
∑
x

∑
y

g(x, y)pX,Y (x, y)

Table 4: Joint pmf: A Summary

9.33. E [·] is a linear operator: E [aX + bY ] = aEX + bEY .

(a) Homogeneous: E [cX] = cEX

(b) Additive: E [X + Y ] = EX + EY
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(c) Extension: E [
∑n

i=1 ciXi] =
∑n

i=1 ciEXi.

Example 9.34. Recall from 9.27 that when i.i.d. Xi ∼ Bernoulli(p),
Y = X1 +X2 + · · ·Xn is B(n, p). Also, from Example 8.47, we have
EXi = p. Hence,

EY = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] =
n∑
i=1

p = np.

Therefore, the expectation of a binomial random variable with
parameters n and p is np.

Example 9.35. A binary communication link has bit-error prob-
ability p. What is the expected number of bit errors in a trans-
mission of n bits?

Theorem 9.36 (Expectation and Independence). Two random
variables X and Y are independent if and only if

E [h(X)g(Y )] = E [h(X)]E [g(Y )]

for all functions h and g.

• In other words, X and Y are independent if and only if for
every pair of functions h and g, the expectation of the product
h(X)g(Y ) is equal to the product of the individual expecta-
tions.

• One special case is that

X |= Y implies E [XY ] = EX × EY. (21)

However, independence means more than this property. In
other words, having E [XY ] = (EX)(EY ) does not necessarily
imply X |= Y . See Example 9.47.

9.37. It is useful to incorporate what we have just learned about
independence into the definition that we already have.
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The following statements are equivalent:

(a) Random variables X and Y are independent .

(b) [X ∈ B] |= [Y ∈ C] for all B,C.

(c) P [X ∈ B, Y ∈ C] = P [X ∈ B]× P [Y ∈ C] for all B,C.

(d) pX,Y (x, y) = pX(x)× pY (y) for all x, y.

(e) FX,Y (x, y) = FX(x)× FY (y) for all x, y.

(f)

Exercise 9.38 (F2011). Suppose X and Y are i.i.d. with EX =
EY = 1 and VarX = VarY = 2. Find Var[XY ].

9.39. To quantify the amount of dependence between two random
variables, we may calculate their mutual information. This
quantity is crucial in the study of digital communications and in-
formation theory. However, in introductory probability class (and
introductory communication class), it is traditionally omitted.

9.5 Linear Dependence

Definition 9.40. Given two random variables X and Y , we may
calculate the following quantities:

(a) Correlation: E [XY ].

(b) Covariance: Cov [X, Y ] = E [(X − EX)(Y − EY )].

(c) Correlation coefficient: ρX,Y = Cov[X,Y ]
σXσY

Exercise 9.41 (F2011). Continue from Exercise 9.12.

(a) Find E [XY ].

(b) Check that Cov [X, Y ] = − 1
25 .
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9.42. Cov [X, Y ] = E [(X − EX)(Y − EY )] = E [XY ]− EXEY

• Note that VarX = Cov [X,X].

9.43. Var [X + Y ] = VarX + VarY + 2Cov [X, Y ]

Definition 9.44. X and Y are said to be uncorrelated if and
only if Cov [X, Y ] = 0.

9.45. The following statements are equivalent:

(a) X and Y are uncorrelated.

(b) Cov [X, Y ] = 0.

(c) E [XY ] = EXEY .

(d)

9.46. If X |= Y , then Cov [X, Y ] = 0. The converse is not true.
Being uncorrelated does not imply independence.

Example 9.47. Let X be uniform on {±1,±2} and Y = |X|.
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Example 9.48. Suppose two fair dice are tossed. Denote by the
random variable V1 the number appearing on the first die and by
the random variable V2 the number appearing on the second die.
Let X = V1 + V2 and Y = V1 − V2.

(a) X and Y are not independent.

(b) E [XY ] = EXEY .

Definition 9.49. Correlation coefficient :

ρX,Y =
Cov [X, Y ]

σXσY

= E
[(

X − EX
σX

)(
Y − EY
σY

)]
=

E [XY ]− EXEY
σXσY

.

• ρX,Y is dimensionless

• ρX,X = 1

• ρX,Y = 0 if and only if X and Y are uncorrelated.

9.50. Linear Dependence and Cauchy-Schwartz Inequality

(a) If Y = aX + b, then ρX,Y = sign(a) =

{
1, a > 0
−1, a < 0.

• To be rigorous, we should also require that σX > 0 and
a 6= 0.

(b) Cauchy-Schwartz Inequality:

(Cov [X, Y ])2 ≤ σ2
Xσ

2
Y

(c) This implies |ρX,Y | ≤ 1. In other words, ρXY ∈ [−1, 1].

(d) When σY , σX > 0, equality occurs if and only if the following
conditions holds

≡ ∃a 6= 0 such that (X − EX) = a(Y − EY )

≡ ∃a 6= 0 and b ∈ R such that X = aY + b

≡ ∃c 6= 0 and d ∈ R such that Y = cX + d

≡ |ρXY | = 1
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In which case, |a| = σX
σY

and ρXY = a
|a| = sgn a. Hence, ρXY

is used to quantify linear dependence between X and Y .
The closer |ρXY | to 1, the higher degree of linear dependence
between X and Y .

Example 9.51. [19, Section 5.2.3] Consider an important fact
that investment experience supports: spreading investments over
a variety of funds (diversification) diminishes risk. To illustrate,
imagine that the random variable X is the return on every invested
dollar in a local fund, and random variable Y is the return on every
invested dollar in a foreign fund. Assume that random variables X
and Y are i.i.d. with expected value 0.15 and standard deviation
0.12.

If you invest all of your money, say c, in either the local or the
foreign fund, your return R would be cX or cY .

• The expected return is ER = cEX = cEY = 0.15c.

• The standard deviation is cσX = cσY = 0.12c

Now imagine that your money is equally distributed over the
two funds. Then, the return R is 1

2cX+ 1
2cY . The expected return

is ER = 1
2cEX + 1

2cEY = 0.15c. Hence, the expected return
remains at 15%. However,

VarR = Var
[c

2
(X + Y )

]
=
c2

4
VarX +

c2

4
VarY =

c2

2
× 0.12.

So, the standard deviation is 0.12√
2
c ≈ 0.0849c.

In comparison with the distributions of X and Y , the pmf of
1
2(X + Y ) is concentrated more around the expected value. The
centralization of the distribution as random variables are averaged
together is a manifestation of the central limit theorem.
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9.52. [19, Section 5.2.3] Example 9.51 is based on the assumption
that return rates X and Y are independent from each other. In the
world of investment, however, risks are more commonly reduced
by combining negatively correlated funds (two funds are negatively
correlated when one tends to go up as the other falls).

This becomes clear when one considers the following hypothet-
ical situation. Suppose that two stock market outcomes ω1 and ω2

are possible, and that each outcome will occur with a probability of
1
2 Assume that domestic and foreign fund returns X and Y are de-
termined by X(ω1) = Y (ω2) = 0.25 and X(ω2) = Y (ω1) = −0.10.
Each of the two funds then has an expected return of 7.5%, with
equal probability for actual returns of 25% and .10%. The random
variable Z = 1

2(X + Y ) satisfies Z(ω1) = Z(ω2) = 0.075. In other
words, Z is equal to 0.075 with certainty. This means that an in-
vestment that is equally divided between the domestic and foreign
funds has a guaranteed return of 7.5%.
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Example 9.53. The input X and output Y of a system subject
to random perturbations are described probabilistically by the fol-
lowing joint pmf matrix:

 

 

 

0.02 0.10 0.08

0.08 0.32 0.40

 
 
 

 

y       2         4          5 
x  
1 
3 

(a) Evaluate the following quantities.

(i) EX
(ii) P [X = Y ]

(iii) P [XY < 6]

(iv) E [(X − 3)(Y − 2)]

(v) E
[
X(Y 3 − 11Y 2 + 38Y )

]
(vi) Cov [X, Y ]

(vii) ρX,Y

(b) Calculate the following quantities using what you got from
part (a).

(i) Cov [3X + 4, 6Y − 7]

(ii) ρ3X+4,6Y−7

(iii) Cov [X, 6X − 7]

(iv) ρX,6X−7
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Solution :

(a)

(i) EX = 2.6

(ii) P [X = Y ] = 0

(iii) P [XY < 6] = 0.2

(iv) E [(X − 3)(Y − 2)] = −0.88

(v) E
[
X(Y 3 − 11Y 2 + 38Y )

]
= 104

(vi) Cov [X, Y ] = 0.032

(vii) ρX,Y = 0.0447

(b)

(i) Note that

Cov [aX + b, cY + d] = E [((aX + b)− E [aX + b]) ((cY + d)− E [cY + d])]

= E [((aX + b)− (aEX + b)) ((cY + d)− (cEY + d))]

= E [(aX − aEX) (cY − cEY )]

= acE [(X − EX) (Y − EY )]

= acCov [X,Y ] .

Hence, Cov [3X + 4, 6Y − 7] = 3 × 6 × Cov [X, Y ] ≈
3× 6× 0.032 ≈ 0.576 .

(ii) Note that

ρaX+b,cY+d =
Cov [aX + b, cY + d]

σaX+bσcY+d

=
acCov [X, Y ]

|a|σX |c|σY
=

ac

|ac|ρX,Y = sign(ac)× ρX,Y .

Hence, ρ3X+4,6Y−7 = sign(3× 4)ρX,Y = ρX,Y = 0.0447 .

(iii) Cov [X, 6X − 7] = 1 × 6 × Cov [X,X] = 6 × Var[X] ≈
3.84 .

(iv) ρX,6X−7 = sign(1× 6)× ρX,X = 1 .
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